PC-369 CV-19

(523) M.Sc. Physics (Third Semester) Term End Examination Dec. 2019-20 Compulsory/Optional Group-Paper – II

Paper – II	
Name/ Title of Paper: Statistical Mechanics	[Maximum Marks : 80
lime : I hree Hours	Minimum Marks : 29
Note : Answer from Both the section as Directed. The figures in the right hand margin indicate marks.	
Section-A	
1- Answer the following questions:	1X10
(a) A Single particle moving in three dimensions constitutes	degree of freedom
system	
(b) If you have two identical gagag at the same terrepreture and	1
(b) If you have two identical gases at the same temperature and pressure in the two	
compariments, nothing changes when the partition is remo	oved. (True or False)
(c) A Partition function describes the statistical properties of a	a system inequilibrium.
(d) Statistical ensemble of several quantum states in called	matrix.
(e) Particles following Fermi-Dirac Statistics obey the Pauli's False)	exclusion principle. (True or
(f) The virial equation of State measures of the deviation of a	real gas from gas
(q) Give the definition of thermal fluctuations	ical gas nomgas.
(b) In	
(ii) Give the definition of early large	istinguisnable.
(i) Give the definition of enthalpy.	
(j) Give the Statement of flections dissipation theorem.	
2- Answer the following questions.	2X5
(a) Explain the Classical ideal gas.	
(b) What do you mean by micro canonical ensemble?	
(c) Define the density matrix.	
(d) What is classical gas.	
(e) Explain the two concepts of irreversible processes	
Section_R	
A new on all exceptions	
Answer an question:	
Unit-I	
 3- Show that in a grand canonical ensemble, if a system is to be an e the pressure and the chemical potential must be constant through Or 	equilibrium state, the temperature, out the system. 15
Explain why does entropy increase on mixing of two gases?	
Unit.II	
4- Deduce an expression for Fermi energy of electron gas in a metal	et abgaluta zona tammanatura 15
Deduce an expression for rentil energy of electron gas in a metal	at absolute zero temperature. 15
What is meant by Bose-Einstein condensation? Explain the prope	rties of Base-Einstein
condensation?	
Unit-III	
5- Explain and discuss the cluster expansion for a classical gas. Drav	$w_{ }$ the diagram of the cluster
expansion for $N=3$.	15
Or	
Explain Ising model. Give the exact solution of Ising model in on Unit-IV	e dimension.
6- Explain thermodynamic fluctuations. Discuss how does energy, p thermal fluctuations?	ressure and enthalpy under go in
Or	15
UI UI	